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Summary. The theory for the carrier transport of ions across lipid membranes 
is extended to consider the potential dependence of the association-dissociation reactions 
between the carrier and the ions and to consider the effects of aqueous unstirred layers 
on the exchange of the carrier molecules between the membrane and the aqueous phases. 
Theoretical expressions are presented under the assumptions that the rate constants 
vary only with the applied potential and that any one of the following appli[es: (1) The 
association-dissociation reaction is at equilibrium; (2) There is only one form of carrier 
in the aqueous phase; (3) The carrier concentration in the membrane is determined 
by exchange with the Plateau border which surrounds a black lipid membrane; (4) The 
total carrier concentration in the membrane is constant; or (5) The association-dissocia- 
tion reactions are independent of potential. The existing data for valinomycin, the actins, 
and carbonylcyanide-m-chlorophenylhydrazone are consistent with several of the ex- 
pressions given but are inadequate to decide between them or, in the absence of addi- 
tional information, to confirm the model. Within the terms of the model, tlhe data for 
valinomycin and nonactin require that the association reactions depend on potential, 
but provide no information on the interracial rate constants for carrier enterinl; or leaving 
the membrane. 

Carr ier  t ranspor t  has been proposed  to explain the act ion on  thin lipid 

membranes  of macrotetral ides ,  depsipeptides, and the weak-acid u:acouplers 

of oxidative phosphoryla t ion .  I t  is in tended to show here that  the available 

quant i ta t ive da ta  fo r  the actins, val inomycin,  and  one of the uncouplers  

ca rbonylcyanide-m-chlorophenylhydrazone  (CCCP),  m ay  all be explained 

on  the basis of approximat ions  to one physical model  where only  the 

values of the various rate constants  are allowed to change f ro m  one sub- 

stance to the next. The  t rea tments  given by  Ciani, Eisenman and  Szabo 

(1969), Markin ,  Pas tushenko,  Krishtal ik,  L ibe rman  and  Topa ly  (1969), 

L/iuger and  Stark  (1970), and  Le  Blanc (1971) are all special cases of this 

same physical model  each der ived under  certain restrictive assumptions.  
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Fig. 1. The steady-state model for carrier transport. All singly primed quantities refer 
to the left-hand side of the membrane, doubly primed to the right, and unprimed to 
either side. The subscript " s "  refers to free carrier, " i "  to the ith species of carried ion, 

and " i s "  to the complex of the carrier with the ion of species i. 

Rate constants, 

Symbols Units Process 

ks, k~s sec-1 left-to-right across membrane interior 
ma' ma'  k S , kis sec-1 desorption, membrane to aqueous 
t m ~  S r m ~  s P, ks , P~sk~s cm/sec adsorption, aqueous to membrane 

Concentrations 

Symbols Units Location 

c,(x), cis(x) moles/cm a point x within either unstirred layer 
c~, c~s moles/era 3 stirred portion of left-hand aqueous phase 
N' ,  N[, moles/cm z adsorbed to the left side 

Parameters Miscellaneous 

Symbol Units Meaning Symbols Units Meaning 

x cm position Ds, D~s cmZ/sec aqueous diffusion 
coefficient 

d cm membrane thickness p~, #~ ~ cm adsorption equi- 
librium constants 

cm unstirred layer at A V= 0 
thickness Ps = risk" f ~ cm/sec permeability of 

d V volt potential Pis = fl~sk~j indicated species 

While the theory  is presented in terms of artificial black lipid membranes  

(lipid bilayers), the results should apply  to any thin hydrophob ic  perme- 

ability barrier.  The  principal  except ion is the section on  lipid buffered 

carriers which assumes the existence of a Pla teau borde r  co m p o sed  of the 



Carrier Transport of Ions 69 

solution or suspension from which the artificial membrane was made. 
A review of the quantitative studies on the carrier mechanism has been 

given by Haydon and Hladky (1972). 
The model to be considered is the simplest self-consistent treatment 

which allows the carrier to be soluble in the aqueous phases. The scheme 
of reactions and flows is given in Fig. 1. The initial formulation must be 
somewhat complicated to account correctly for the limitations imposed 
by the finite rate of diffusion in the aqueous phases and the finite rate 
constants for crossing the membrane-aqueous interfaces. Howew,~r, the end 
result is surprisingly simple: in most cases it is possible to describe the entire 
effect of aqueous polarization and interfacial resistance by introducing an 
effective series boundary permeability for the total flux of the carrier. 
The treatment follows the same lines as that presented in Appendix A 
of Haydon and Hladky (1972) for the simpler case of lipid-so]Luble ions. 

The General Model 

A symmetrical membrane of thickness d separates two aqueous phases. 
These phases are assumed to be perfectly mixed except in layers of thickness 
8 which are adjacent to the membrane. This division of each aqueous 
phase into a perfectly stirred region and a completely unstirred layer is a 
fiction designed to account for the fact that transport perpendicular to a 
surface, close to that surface, occurs by diffusion alone, while transport 

occurs by both diffusion and convection when the distance from the surface 
is greater 1. This treatment of the aqueous phases is discussed at length in 

Vetter (1967). 
The carrier, species S, which may be neutral or charged, is present 

far from the membrane at concentrations c's = c s ( -  8, t) and c ; '=  cs(d+ 8, t) 
for all values of the time t. Ions of various species M, are present in the 
aqueous phases at activities a', (left-hand side) and a~' (right-hand side). 
These activities are assumed constant right up to the membrane. The effect 

1 The electric field in the aqueous phase is assumed to be zero, an assumption which is 
justified provided the membrane conductance is sufficiently low for each electrolyte 
concentration used. The membrane resistance must be considerably greater than that 
of the aqueous phase in series; i.e. for 0.1 M electrolyte, it must be greater than 102 f~ cm 2. 
There is, of course, a portion of any applied potential which occurs in the aqueous phase 
even in the limit of zero current, but this effect has been shown theoretically to he 
negligible provided the electrolyte concentration is sufficiently high (Everitt & Haydon, 
1968). Thus, in the unstirred layers, movement of the charged forms of tlhe carrier is 
assumed to be by diffusion alone while the current is carried partially by ,each species 
of ion and thus, since they are more numerous, primarily by the ions of the electrolyte. 
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of surface charge, dipole potentials, etc. on the ionic conductances is ex- 
pressed in the values of the interracial rate constants defined below. 

The aqueous complex between the carrier and an ion is formed and 
broken by the reaction 

~ K~ 

at + c~ ---~------~- ct ~ (1) 

where Kt is the aqueous association constant and ct~ is the concentration 
of the complex MS, .  The activity coefficients for M S ,  and S have been 
included in Kt. Since cs and ct~ are both small, these coefficients should not  
depend on c, or ct~, but  they will, in general, vary with the ai. The same 
comments  apply to fij defined below whenever j refers to a charged species. 
To a first approximation these variations may be eliminated if the total 
concentration of similar species is maintained constant as at is varied; e.g., 
by the use of an excess of a nonpermeating, nonreacting electrolyte. The total 
concentration of the carrier in all forms in the left phase far f rom the mem- 
brane is, f rom Eq. (1), 

Z t i v t 
c~ =c~+~Kiatc~ (2) 

i 

and similarly on the right side. 

The carrier and the complexes are assumed to adsorb to the left side 
of the membrane according to (written for a complex) 

�9 m a t  # ~  k i s  
ci,(0) - N[~ (3) 

k ~ '  

and to the right according to 

ci,(d) .f~" ka"--------~" N'2. (4) 

In these equations ct~(0) is an aqueous concentration adjacent to the mem- 
brane, N[~ is a surface concentration, and fl~, is a partition coefficient, 
all for the left side of the membrane.  The length fli, is that  thickness of the 
aqueous phase which contains the same quantity of species M S t  (at equi- 
librium) as half of the membrane.  

In addition to the fluxes into and out of the membrane in Eqs. (3) and (4), 
ions may cross the interfaces via the heterogeneous reactions 

and 

kh~ IV: ai + N" ~,-7g7-..~ (5) 

a T + N "  k~,, ,, " kS," N, ,  (6) 
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in which the species S and MS~ are adsorbed while M, is not. The necessity 
of including these heterogeneous reactions when dealing with ion transport 
has been demonstrated by Le Blanc (1971) for CCCP and by Stark and Benz 
(1971) for monactin and valinomycin. The activity coefficients of the adsorbed 
species are taken as unity. 

The fluxes across the membrane interior need only be specified as simple 
linear relations such that 

J~ = k; N; -- k;' N~" (7) 
and 

J,~ = k~ N[~ - k~'~ N,';. (8) 

Several examples of suitable k's are given by Haydon and Hladky (1972). 

The model is formally specified by the equations of conservation of 
mass (i.e., the equations of continuity) and the assumption of linear flows. 
(For a simpler example, see Appendix A of Haydon & Hladky, 1972.) 
Thus for the left-hand side 

0 0 2 Cs Cs 
= ~ ~ (ci s-- Ki c~ ai) + D~ 0t T" axE 

and 

where 

and 

(9) 

0 ci___L~ = ~i (Ki ai c~ - ci ~) + Di ~ 02 ci s (10) 
Ot Ox 2 

dN" = ~  (k'mN[,-k'R~a~ N~)+ J ' - J ~  (11) 
dt 

dN[~ -k'R,a~ N2-kS~N[~+ J [ - J ~  (12) 
dt 

, {Oc ] m~  , , 
.I; = - D ,  Ox/x=o =ks 

m a '  t t , ( 0 r  = k .  
Jis= -Dis  \ Ox /x=o 

(13) 

(14) 

Eqs. (13) and (14) are the boundary conditions used to match the solutions 
of the preceding equations. Similar equations and boundary conditions 
apply to the doubly primed (right-hand) side. All of the constants are assumed 
to be independent of the concentrations and currents; i.e., for a given mem- 
brane they depend only on the applied potential and temperature. 

In the steady state, all of the time derivatives are zero. Hence, the sum 
of Eqs. (9) and (10) for all species becomes 

d 2 
dx2 (D cs+ 2 D.c.)=O (15) 
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After integration once, 

d 
dx (D~c~+ZD'~c'~)=J;+~J"~" (16) 

i i 

Then, after a second integration, 

J2 + ~ g/s= {Dsc'~ + ~ Disc~- Dsc~(O)- ~ D~c,~(O)}/& (17) 
i i i 

Thus, in the steady state, the total net flux of carrier is the same at all levels 
in the unstirred layer. However, the individual net fluxes of free carrier 
and complexes are not independent of x. 

The model equations have not been solved even in the steady state. 
What will be done here is to present certain special cases which correspond 
to the types of data available or which illustrate the basic features of carrier 
transport. A complete derivation will be given for the local-equilibrium 
approximation since this allows the simplest solution displaying the effects 
of aqueous polarization. A somewhat briefer statement will be made of the 
expressions which apply when there is negligible charged form of the carrier 
in the aqueous phase. It is, of course, probable that for some systems the 
carrier concentration in the membrane is not determined by exchange of 
cartier molecules with the aqueous phase. In particular, artificial black lipid 
membranes are surrounded by a plateau border of the membrane-forming 
solution and exchange of the carrier with this plateau border may deter- 
mine the membrane concentration. Another solution is therefore obtained 
under the assumption that the neutral form of the carrier is buffered by the 
carrier in the border. It is also possible that there are carriers which are not 
solubleineithertheaqueousphases or the border(orthebordermaybeabsent).  
In this case, the simple assumption is that the total amount of carrier in 
the membrane is constant. A solution is provided for this case as well. 
Finally, if the partition coefficients of the cartier and complex into the mem- 
brane from the aqueous phases are independent of the applied potential, 
and the two aqueous phases are identical, it is possible to provide a solution 
allowing both nonequilibrium at the interfaces and arbitrary amounts 
of both forms of the carrier. 

Local Equilibrium 

If the association-dissociation reactions are considered to be fast relative 
to transport, then in the aqueous phase on the left 

c~(x, t)=K~ a~ c~(x, t) (18) 
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and at the left interface 

Ni's- kraal N'--  K~a~Ns'. (19) 
t 8 - -  ! k~ ~ 

The last equality follows since 

N,'~ ~ ' . (20) 
N" \ ci~(O) ] \ G(O) ] 

Two similar relations hold on the right. A steady-state solution is now 
merely a matter of some linear algebra. Solve first for the total net flux 
of carrier, both free and combined, from - 6  all the way across to d + &  
This flux ~ is equal to the total net flux across the left-hand unstirred layer 
J~' + ~ d [ ,  given in Eq. (17). Under  the present assumptions, 

i 

dp = (D,I~ + X O,~ K, a~16) [c;-  c,(0)]. (21) 
i 

The flux ~> = J" + ~J;~ is also, of course, still equal to the total net flux 
i 

across the left-hand interface, 

q~ = kT"' [fl'~ G(O) - N'] + E k.~"' [fl~, c,,(O) - N,'~] (22) 
i 

or, after rearrangement, 

q5 = [fl" kT"'+ E ill, K, a~ k~"'] [G(0)-  N~ /fl']. (23) 
i 

Use either Eq. (21) or Eq. (23) to eliminate G(0) from the other, then solve 
to find 

~o = O' [e'~- N2/fl; ] (24) 
where 

I I~ Fl \ 

(risks +Ef l isK,  a, kis ) 
Q'-  ~ ~ !  ' (25) 

Corresponding relations hold on the doubly primed side. The quantity Q 
is the "'permeability" of the series combination of the unstJ[rred layer 
and the interface for the carrier 2. Since the unsfirred layer is generally 
about 10 ~ times thicker than the membrane interface, in the absence of 
peculiar conformation changes, it will normally be expected fer  a water- 

2 The permeability defined as Q" relates the total flux of carrier in all forms to the con- 
centration of free carrier. On aesthetic grounds it might be preferable to refer to the total 
concentration of carrier. However, the resulting algebra is more complicated and leads, 
of course, to exactly the same results. 
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soluble carrier that 

Q ' = D j 6 + ~ K i a ~ D i s / 6 ~ r '  ~ ""' . . . .  , ks +~Kiai[3~.~h~ (26) 
i i 

and similarly for Q". These relations are upper limits for the Q's. 

A third equation for ~b is provided by the relation for the total flux 
across the membrane. Thus, 

dp=J~+ Z J~ (27) 
i 

which from Eqs. (7), (8) and (19) becomes 

�9 r ~  

= (N~lr;) [P; + H;] - (N~'/riD') i-P;' + n" ]  
where 

! p 
P; = r; k;, P{  = r;~ k~5, H; = ~ Pis K,  ai, etc. 

i 

(28) 

(29) 

(30) 

The limits P~' = P" = P, and Pi',, = P['~ = Pis which hold for the applied potential 
A V equal to 0 are the (interior) permeability coefficients for the species 
S and M S i ,  respectively. A solution for ~b in terms of c', and c ' / m a y  now be 
written down by eliminating N~' and N" from Eq. (24), the comparable 
doubly primed equation for the right-hand side, and Eq. (29). Then 

4 -  (e; +n;)  c ; - (e ; '  +n; ' )  4' (31) 
1-+ --e; + n" + P;' + n;' 

9.' 0." 

This expression is then inserted back into Eq. (24) and its parallel to yield 
N" and N". From these it is possible to write down immediately that from 
Eqs. (7) and (8) 

r c; c;' 1 
P" c' s -  P;' c'/ + [--~-  + ~ - J  [P; H "  - P;' II'] 

J , -  (32) 
1+ --P'+H; + P;'+II" 

(2' Q" 
and 

. . . . .  r c; c;' 1 
Pi~Kial c s -  Pi, Kia; '  c'~' + �9 

l q  P;+H' ,  ~- 
(2' 

t !  t !  v ! r r v t  t !  �9 [(P; + G  )-G.G a~-(P~ + G ) - G  K~a~ ] 
P " + G '  

4 Q,, 

(33) 
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These two equations are the predictions of the local equilibrium approxima- 
tion. They have been written in such a way as to emphasize the two routes 
by which transport is occurring. In each case the first two terms of the 
numerator represent transport all the way across from the stirred phase 
on one side to the stirred phase on the other. Thus P" c ' , -  P" c" would be 
the transport of free carrier across the membrane in the absence of aqueous 
polarization and interfacial resistance, and K i [P[sa'i c'~ - Pi'~ a~' c; ~'] has the 
same meaning for the ith complex. 

The third, more elaborate term in each equation represents the net 
circulation of the carrier. Thus P~'/-/;' is the rate expression for the process 
in which free carrier crosses from left to right while complex returns from 
right to left. The difference, P " / / ; ' - P " / / ; ,  is thus proportional to the net 
movement of free carrier across the membrane which is balanced by a 
movement of complex in the opposite direction. 

The denominator scales these two types of fluxes to make the total 
equal to the actual flux in the presence of the boundary resistance. As 
the resistance of the boundary increases, i.e. as Q decreases, the denominator 
increases and the straight-through flux decreases. The circulation, however, 
remains independent of Q provided that 

2(P~+11~)/Q >> 1. (34) 

Thus, whenever this inequality is satisfied Eqs. (31)-(33) imply that 

Js-~ -F~J,~. (35) 
i 

To compare these predictions with quantitative experimental data, it is 
necessary to specify the charges of the carrier and the complex. The two 
cases to be considered are a charged carrier with a neutral complex and a 
neutral carrier of ions. Other cases analogous to those considered by Markin, 
Pastushenko et aL (1969) may be reduced from Eqs. (32) and (33) in the 
same general manner. Since there is at present no data available for a charac- 
terized neutral carrier of neutral solutes, the case has not been considered. 

Negative Carrier, Neutral Complex 

There are two experimental arrangements which are particularly con- 
venient. In the first, the solutions are different and the zero current potential 
is determined. In the second, the solutions on the two sides are the same 
and the current-voltage relation is measured. In both arrangements the 
symmetry of the membrane requires that k~s=k~'s and /~s=/~" since MS~ 
is a neutral species. 
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The zero current condition is always the solution to Eq. (32) when 
J~ = 0. To express P'/P2' in terms of A V consider the limiting case for which 
all a~ =0. Then the zero current condition is simply 

0 =P" c~-P~" c;'. (36) 

Since now only one species is permeable, zero current implies that  all net 
fluxes are equal to zero. Thus, when a~ = 0  the zero current potential is the 
equilibrium potential and is therefore given by 

Eq. (36) thus requires that  

- z s F A V / R T  t t~ t e = c~/c~. (37) 

P' /P"  =e -~F~vmT. (38) 

Since P2/P" is a constant independent of a~, c~, etc., this relation must  hold 
in general. 

The relation for the zero-current potential may now be written down 
for arbitrary ai and G, f rom Eq. (32) with J~ = 0  

Q' Q" c" 4-(0'  c" + Q" c'/) (~ ,P~K~ a~) p ;  8 - -  \ X,, 

P; Q 'Q"c '  ( O ' c ' . O " c " ~ ( v p  " "  " s ' - b t ~  s - - , v . ,  s J ~.z..~ i s K i a i  ) 
i 

(39) 

For  Y~ P,,K,a~ ~Q,  the potential is determined by the gradient of the carrier, 

while for the reverse inequality, it is determined by the various cations. 
In the second experimental arrangement, c r' r,, , . . . . .  = Cs , ai = ai , cs = Cs , 

H" =/7" ,  and I = z f l ,  F. Thus, the prediction for the current is, f rom Eq. (32) 

T ) p._ps 
I _ j =  G 

z~F l + Z K i a i  14 Q"P2+Q'P; '  
i Q, Q,,+(Q, +Q,,) (~nisKzai)  

i 

(40) 

, ~  ,, For  small applied potentials P ; - P ;  and 
requires 

P;/P;' ~- 1 - zs FA V /RT  
and t v t  

- P ;  _ -Psz FAV/RT. 

The conductance in the limit of zero potential difference is therefore 

2F2 ( T ) G(O)- ~q~ __-I _ z~ Cs P, 
AV-,O AV R T  l + ~ K~ai 14 2Ps 

i Q+2~PisK~a  i 
i 

In addition, Eq. (38) 

(41) 

(42) 
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The Q's in Eqs. (39), (40) and (42) will, in general, depend on the ai. However,  

only when the ai are so small tha t  

or, for  a single ionic species, 

2 Y',Pi~K~a, ~ Q (43) 
i 

ai < Q/(2Pi~ Ki) (44) 

is a value for  Q required. Consider first the value of Q when Eq. (2,6) applies; 

then Eq. (44) becomes 

D,/6 (45) 
al <~ Ki(2Pis_Dj6) .  

For  all carrier systems which have been investigated, the permeabil i ty 

of the neutral  form, here MSi, has obeyed 3 2Pis>>Di~/~~D~/fi and hence 

only for 

D s 1 
ai ~ ~ (46) 

2Ki P~ s ~ Ki 

is Q important .  If Eq. (26) applies then Eq. (46) with Eq. (26)yields  Q = 

D,/& If Eq. (26) does no t  apply then no simple expression is available for Q. 

However,  the inequali ty in Eq. (46) still applies since Eq. (26) gives an upper  
limit for Q. 

In the instances where Eqs. (26) and  (46) do apply, f rom Eq. (39), 

(D,/6) c'~' + (c'; + c'~) (Z P~s Ki a'i) 
e-Z, ravmr_ i (47) 

(Os/fi) c" + (c's' + c') (E Pi, Ki a'i')" 
i 

3 This inequality is likely to apply to all carriers which are only sparingly soluble in the 
aqueous phase. To compareP i s and D i s/6 it is necessary to separate two effec, ts, the parti- 
tion of the neutral form into the membrane, and the purely kinetic factors of rate of 
movement and distance to be moved for each particle. Thus, for this comparison, Pis is 
conveniently written as Pis=KpD~/d. The correspondence of this way of writing Pis 
with the product used in the remainder of this paper is discussed in Haydon and Hladky 
(1972). The partition coefficient Kp refers to partition into the membrane interior, while 
fli~ refers to the adsorption layer. The diffusion constant in the membrane D~s will 
probably be less than Dis , but only by a few orders of magnitude such that for liquid 
membranes it should be safe to contend that D'l's > 1 O-s Dis. The thicknesses of the layers 
are such that (1/d)/(1/6)N 2 • 104. The partition coefficient Kp will vary widely from one 
substance to the next. However, for any efficient carrier of ions, Kp~ 1 since the substance 
must have an abundance of hydrophobic groups to be able to solubilize ions Jn the hydro- 
carbon interior of the membrane (see discussion at the end of the section of carrier 
transport in Haydon & Hladky, 1972). In any case, Kp~ 1 for all the carriers reported 
to date. Thus, Pi~Dis/6. (Of course when the carrier is neutral the relation becomes 
Ps>) Ds/J.) 
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Similarly, from Eqs. (39) and (26), 

2 2 

G(O)=-RT- - - l+~K,a [  1 + - -  2Ps 
i Ds/6 + ~ Ki  al (2Pis + Di,/6) 

(48) 

Eq. (48) is the relation derived by Le Blanc (1971). 

To rewrite Eq. (40) in terms of the applied potential, some assumption 
must be made about the potential dependence of P~'. Eq. (38) then deter- 
mines P;'. There is no one theory which is obviously better a priori than 
the others. If it is assumed that 

P ;  = Ps e-zsFAV/(2RT) 

and Eq. (26) applies, then 
(49) 

j,=(_ cs ) (-2)P~sinh[z~FAv/(2RT)] 
l + 2 Kia~- l q 2Psc~ (50) 

D J6 + ~ g i at (2Pis + Di s/g)) 
i 

Alternative versions are discussed in Haydon and Hladky (1972). Whatever 
assumption is made, it should be checked by measuring the current-voltage 
relation under conditions where 

~ PisKiai>> Pr (51) 
i 

This procedure is not, however, foolproof since it depends on the correctness 
of the local equilibrium assumption. 

A lipid-soluble ion is the limiting case of a carrier for which K~ =0 
for all i. Eq. (22) then reduces to 

Q,_ fl; k7 ~ Ds/a (52) 
+ fl~ ks D J6 ' ""' 

and similarly for Q". The equation for the current [Eq. (40)] becomes 

I -J~=c[ P;-P; '  (53) p, p"  zsF 1 +--~-t Q,, 

and finally 
c +zsFAV/RT -.~ T' T" cs /c~ . (54) 

These are the results derived directly in Appendix A of Haydon and Hladky 
(1972). 
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Neutral Carrier, Charged Complex 

For the neutral, free form of the carrier, symmetry requires k'~ = k" and 
fl'~ = fi;' in precisely the same manner as before. The observable flux [Eq. (33)] 
in the presence of a single ionic species becomes (T ) 

ji = c~ K, al 
1 + K i ai 

1-+ 

and thus the limiting conductance is 

t t/ e,s- P,, 
Ki ai [Q" P . . . . . .  
Q'Q"+(Q'+Q")P, 

) G(0)= z2~F 2 c~ Kiai. 
RT  l + Kia ~ 

P~s 
1-t 2P~,Kiai 

Q+2P~ 

(55) 

(56) 

An explicit form of the current-voltage relation still depends on the assump- 
tion for the potentialdependence of P',. If Eqs. (49) and (26) are botlh assumed 
to apply, then 

j~ = (  c:K~a~ ) (-2)P~sinh[z~FAV/(2RT)] 
l + Kia~ 1-~ 2K*a*Pisc~ " (57) 

2Ps + DJ~ + K~ ai Di ~/~ 

The zero current condition for a single ionic species becomes, from 
Eq. (33) with J~s =0, 

= =(a; '~  Q'Q . . . .  4-pl-o'c . . . .  c" Pi', e-Z,,raVmT c, _ ,L~ ,-t-Q ' ]  (58) 
Pi'• \--~i ] Q' Q" c', + P, [Q' c's + Q" c'/] 

Whenever Q' and Q" may be written as Q'=Qo(1 +K,a~) and Q " =  
Qo(1 +K,a~') for some Qo, e.g. D~/6, then Eq. (58) simplifies to 

T '  T "  Q O  T "  7 t 
e _[a~"~ c~ +c~ +--~-cs ( l+Kia,)  

-z,~r~v/Rr _ (59) 
\ a ~ ]  T' T'" O~~ T' t ~ "  c~ +c~ + p~ c~ ( l + K , a , )  

For P~> Qo, the result is strikingly simple: 

e-Z"~/"T=a~'/a', (60) 

as found by Szabo, Eisenman and Ciani (1970). 

Negligible Aqueous Association 

The complexity of a solution to the model equations results primarily 
from the coupling of the fluxes of S and MS,  in the aqueous phase. When- 
ever these aqueous fluxes may be ignored or approximated, a solution 
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becomes comparatively simple. If the total concentration of the complexes 
in the aqueous phase is assumed to be negligible, then it is possible to set 
J[~=J" =0 and thus obtain a steady-state solution in a manageable closed 
form without assuming that the association-dissociation reactions are at 
equilibrium. A comparable expression for a negative carrier is presented 
in the section on lipid-buffered carriers�9 For simplicity the results are presented 
assuming a single ionic species M~. 

The combination of the interracial and diffusion terms proceeds as 
before, 

S / =  (D~/6) [c; - G (0)] 
= k7 a [fin cs(O)--N;] (61) 

=QG-N'/#3 
where now 

(DJ6) fi~k m" 
Q - D J6 + fls k'~ a" (62) 

Thus, the steady-state solution for a single species of ion is obtained from 
the following set of equations which replace Eqs. (7), (8), (11) and (12): 

- (k'Ri a~ + Q/fla) Na' + k'Di Nita-,ls = - Q c'~ (63) 

kR~ a~ N~' - k~, N[a - Y~a = 0 (64) 

- (k'~, a~'+ Q/fix) N~"+ k'~, IV[" +.Is = - Q c~' (65) 

k~, a~' N~"- k~, N[" +Y~ =0 (66) 

J~a = k~a N[ , -  k~', Ni~ (67) 

J~ = ks (N; -  N't). (68) 

The algebra of the solution is tedious but straight-forward (e.g., by the 
method of determinants, see Thomas, 1953, p. 435). The solution for J~ is 

. . . . . .  k" .a  t. . . . .  ~ c',')] ] { k i . m . ,  [ O C a + & k & a + C ~ ) l  R, , ,_,, [Qc~ +#~ka(Ca+ 

�9 ~ ,~DL_ - L ~T"t'~s _J_ __,D L __s ~T~Fs~__ . (69) 

I 1 ' G + k5 + k~,a7 [ #ski~ ~+ k:/,ai' [ #~k;'s 

If, as expected, Pa = #aka >> Q, then 

i t~ pp I 
k'Ria'i k~ kRia~ ,, 

4 s = #  ~ c'~+c;' k'~ k ~  kia (70) 
1 '  k~ . ~  . k'aia~k~ k'd~a~'k['~" 

t T t T ~  r ~ tt 
kDi kDi kD~2ks kD~2k~ 
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The expression for the limiting conductance between identical solutions is 

kRi ai 

G(O)- z~sF2 fl~c~ \km+2kis] k~s 
Mr (71) (_ /_r .] [ 2fl~ki~ 

1+ 
\kDi+2kis] \ ks Q+2fl~ ) 

which is only slightly different from Eq. (56). The current-voltage relation 
is, however, much more complicated. It is still true that 

k'Riki~ / . . . .  ' k n i  k i s  = e-z,~ F~vmr (72) 
;! k'Di / k~i 

but now the potential dependence of k~i and k~dk'm must be specified 
separately. Thus, removing the assumption of local equilibrium introduces 
an additional arbitrary function. The available current-voltage data is 
neither precise enough nor sufficiently extensive to make a fit to the experi- 
mental curves in itself a convincing proof of the model. 

Lipid-Buffered Carrier 

In the two approximations discussed above, it has been assumed that 
the total carrier concentration in the aqueous phase G r is known and con- 
stant. Thus, the expressions for the membrane fluxes have been derived 
under the assumption that, when the net fluxes are zero, the concentrations 
in the membrane are at equilibrium with those in the aqueous phase. How- 
ever, in experiments with artificial black lipid membranes, there is a hydro- 
carbon-lipid Plateau border around the edge of the membrane. Both Stark 
and Benz (1971) and Hladky (1971, 1972) have pointed out that, in experi- 
ments with the neutral carriers, reproducible, stable conductances are much 
easier to achieve when the carrier is added to the hydrocarbon phase. Thus, 
carrier in the membrane appears to be closer to equilibrium with carrier 

in the Plateau border than with that in the aqueous phase. This inference 
might seem surprising since the exchange of carrier with the Plateau border 
must occur through the walls of a very short cylinder; i.e., an area 27rpd 
where p is the radius of the membrane, while exchange with the aqueous 
phase occurs across the ends of the cylinder with area  2rcp 2. For p =500 ~t 
and d =  50 A, the latter area is l0 s times larger! However, exchange with the 
Plateau border occurs by diffusion within the membrane where the con- 
centration of a neutral form of the carrier may well be 10 4 t o  10 5 times 
higher than the concentration of the neutral form in the aqueous phase. 

6 J. M e m b r a n e  Biol. 10 
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If the Plateau border and the aqueous phase are not themselves in 
equilibrium, the dependence of G on a~ will depend on the factors governing 
the carrier concentration in the membrane. For equilibrium with the aqueous 
phase, i.e. an aqueous-buffered carrier, and a single species of cation, 

and 

T 
Cs 

Ns=fls 1 +Kiai  

cr~ K~ a~ 
Nis=flls l + Kiai 

(73) 

kRi ai fis cr 
- -  I+K~ )" (74) 

For equilibrium with the Plateau border, i.e. a lipid-buffered carrier, 

and 

c (75) N,=~sc, 

N/~ = k_R i a~ r (76) 

Thus, in the first instance for constant c r, h~ + N~ first increases with ai 
then reaches a plateau at fi~s cr. In the second instance, at constant c~, 
Ns + N~s continues to rise indefinitely while Ns remains constant. Of course, 
the distribution of carrier between the bulk hydrocarbon and aqueous phases 
also depends on a~ in such a manner, 

c~o~ c~ = cr/(l + Ki ai), (77) 

that at true equilibrium there is no ambiguity about the dependence of the 

membrane concentrations on the total quantity of carrier and the concentra- 

tion of ions. 
For lipid-buffered carriers, solutions are available to the model equa- 

tions under less restrictive assumptions than for aqueous buffering. It is 
now possible to ignore completely the complications of aqueous polarization 
and thus the terms involving Q. Setting Q =0 in Eqs. (63) and (65) is not 
equivalent to denying the aqueous solubility of the carrier or to requiring 
an infinite resistance at the boundary. What it does require is merely that 
membrane fluxes, i.e. Js and .lls, be much larger than the fluxes across the 
unstirred layers; that is, it requires Q to be small in the sense of Eq. (34). 
In the local equilibrium and negligible aqueous association approximations, 
the Q's had to be carried through the calculations to determine the effect 
of the fluxes on N2 + Ns'. By definition in the present approximation, they 
are no longer needed for this purpose. 
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Neutral Carrier 

If the partition of a neutral, lipid-buffered carrier from the Plateau border 
into the membrane is assumed to be independent of applied potential, then 

t t t  L Ns +Ns =2(sC~ (78) 

for all a, and A V. If there is only one species of ion, and, as suggested in the 
previous paragraph, it is assumed that 

Jis = -.Is (79) 

then Eqs. (63)-(68) with Q =0, and Eq. (78) may be solved simply by the 
use of the same device for J~s which led to Eq. (31) for r The solution for 
Jis is 

k'Rial k~s kRia~i k~'~ 

kS, k ; ,  ,, (80) 
J's=r k;s ki', k'Ria; k'is k~,ai' kis 

+ , - - - = -  + 
kDi 2k s k , i  2k  s 

which has exactly the same form as Eq. (70) derived under the assumption 
of negligible aqueous association. Indeed, the leading factor in both cases 
is just the constant (N~' + N~')/2. There are, however, two important differ- 
ences. Here, N" + N~" is presumed constant for all a, so long as the carrier 
is still lipid-buffered. In Eq. (70), constant N~+N:'  depends on K i a , ~ l .  
The second difference is in the interpretation of kRi and kD,. For use in 
Eq. (80) these are defined as those constants which make Eqs. (63) through 
(68) with Q =0 an accurate description. If the process 

MS~ ---* S' + M~(0) (81) 

occurs solely via the intermediate steps of desorption and adsorption, 

MS; ~ MS~ (0) ~ S (0)+ M i (0)--> S'+ M~(0), (82) 

then this is the process described by ko~. The use of kD~ assumes, not the 
route of the dissociation, but that the association-dissociation :reactions, 
depend on N's and Ns' and not on c s ( - 6 )  and Cis( -6) .  If fl~skmf'>>Dis/,~, 
Ds/6; this assumption applies to dissociation occurring in the aqueous 
phase immediately adjacent to the membrane. As mentioned in connection 
with Eqs. (5) and (6), Stark and Benz (1971) and Le Blanc (1971) have shown 
that the magnitudes of kR ~ and k ,  ~ indicate that for valinomycin, the actins 
and CCCP the dissociation-association reactions occur without the necessity 
of the intermediate steps in Eq. (82). However, contrary to the statement 
6* 
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in Stark and Benz (1971), terms of the form 

kRiai kis 
kO i 2 k  s (83) 

will occur regardless in the G -a~ relation; e.g. Eq. (56), or that reduced from 
Eq. (80). 

Since Eqs. (70) and (80) have the same form, it cannot be shown from 
an I - V  curve with K,a, ~1 whether a neutral carrier is lipid- or aqueous- 
buffered. In general, the answer depends on the relative rates of exchange 
of carrier between the membrane and the aqueous phase and Plateau border, 
respectively, which depend in different ways upon p. Thus, for a neutral 
carrier with K;a, > 1, if the G-a~ curve is determined by merely changing 
the aqueous phase, the data may well depend on membrane area. This 
difficulty may be avoided by pre-equilibrating the hydrocarbon and aqueous 
phases at each ion concentration thus allowing c~ and c r to vary according 
to the restrictions imposed by Eq. (77) and the known total amount of 
carrier. 

Neutral Complex 

For a charged carrier with a neutral complex, where the complex is 
lipid-buffered, the expression for the current is 

k~; kl;i kgl ] 
I _j+=~;+ci~ U k'Ria~ k's k'~,ai' U+' (84) 

' k ~ '  k;~ k; k's' z~F 1 +7-77--7,+ ,,-;7;--7,,, q- 7 - - ,  
m 

kRial kRiai k, Ria i 2kis k~a~' 2kis 

This equation corresponds to the relation derivable under the negligible 
aqueous dissociation approximation where ~sCLs would be replaced by 
[3;~(ci~ +c;3/2. For a'i =a~', k~i =kRi, and k'oi =k~i, Eq. (84) becomes 

.c - -  ~ (85) 
1%~a; . . . . . . .  ( I  l ) i  

which may be compared with Eq. (40) calculated on the basis of the local 
equilibrium assumption. 

Membrane-Bound Carrier 

The presence of a hydrocarbon-lipid Plateau border is a peculiarity 
of artificial black lipid membranes. The only possible reservoir of carrier 
in most membrane systems will be the aqueous phase. Thus, either the carrier 
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concentration in the membrane is determined by exchange with the aqueous 
phase or else it is constant. The membrane-bound carrier assumption 
requires that 

N r = N i  + Ni' + Z (N/s+ N[; ) (86) 
i 

be independent of a~ and A V. By definition in this case, charge transfer 
occurs by the association-dissociation reactions. The equations to be solved 
for a single carried species are Eqs. (63)-(68) with Q =0, and Eq. (86). 
The algebra proceeds in the same manner as for local equilibrium, but with 
rather more involved expressions, leading to 

. . . .  . . . .  / 4  Jis=NT(ks klsKi - ksk~sKi  ) [ks(1 + K~'") " m,- +ks (1 +/~ )1 
/ k  

�9 1+ k;, , k ; ' s ]  [ ~, .~,,,+k;st,, ; 'g '(J+K.7")+ " ""  k./q (1 +K7') (87) 
[ kor koi J 

(kb~-k;;~] ' k~ K~ - k ; ; k ; K y ' ] }  + - ~, ~,, [ki~ " "" 
\ kDikl)i ] 

where 
m ~ ! t t m pl t !  t ! ,  t !  K i =kRial/kDi and Ki =kRia l / km.  (88) 

In the special case of a neutral carrier (k; =k;') for which K2' ::K2" and 
kb~ =k~ ,  Eq. (87) simplifies considerably to become 

kR i ai ,, 1 + ~  l+(k;s+k~s)(~+ k.,a~ ~ (89) 
\ k . i  2k inks]  

None of the carrier substances which has been isolated to date is sufficiently 
insoluble in the aqueous phase to allow the a priori assumption of constant 
Nr independent of a i and A V to apply. 

Interracial Constants Independent of Potential 

Markin, Krishtalik, Liberman and Topaly (1969) and Markin, Pastu- 
shenko etal .  (1969) have presented another approximation for carrier 
transport which treats carriers and complexes of arbitrary charges but on the 
assumption of a constant potential energy gradient for an ion crossing 
the membrane (see Haydon & Hladky, 1972, for a discussion of the differ- 
ent potential assumptions). Lfiuger and Stark (1970) have given alternative 
expressions based on a rate-theory approach which is, however, restricted 
to neutral carriers. The formal analysis in the two cases is the same. Both 
treatments allow a finite rate of exchange of carrier and complex across 
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the aqueous-membrane interface but completely ignore diffusion polariza- 
tion in the aqueous phases; e.g., they assume cs (0) = e's. Thus, the expressions 
as derived are limited to the range of k~ a and kl ma such that Q is determined 
at the interface and hence is much less than Ds/3 + Y'KiaiDis/6. L/iuger and 

i 

Stark's (1970) equation for a neutral carrier, which assumes k'Ria'i =k'~ia" i , 

kDi =kDi, ki~ a" ma" ma" .,." T' " ' " =k~s , ks =ks , cs =c r , and a single electrolyte is 

[ ma(  kRia i )] 
( -.Kiaifi, s ~ (k~s-ki's) 1+ k~'s" 1+ - kD i 2 k s + k2 a (90) J~s=c[ 

l+Kia~]  1-+ 2ks+k~ '~ +~-~--t kD i 2ks+k~ ~ 

In Eq. (90) only if 
kirnsa > kD i (91) 

can ki~ ~ be detected and only if both 

k"~"> 2k, and kniai/k'~a> l (92) 

can k~ '~ be detected. However, unless 

flis lclms a, fis km a<~ Ds/6 ' D, Jr, (93) 

neither interracial process can be detected in series with the aqueous phase 
and Eq. (90) is invalid. No results are known for which these inequalities 
appear to be satisfied. Indeed, if 

Ps = fls ks >> D J6, (94) 

then either Eq. (92) or Eq. (93) must be violated. In the limit where Eqs. (91), 
(93) and (94) apply, 

( K~aifils ) k~s-ki's 
"]is=Crs l-t-Kiai l-[-k~Jklms a + k!'/kmats, is (95) 

In the other limiting case where 

ma kis /kDi~ 1 
and 

ra a ks ~2ks, 
Eq. (90) simplifies to 

( Kiaifiis ) k~s-k~; 
Jis=cr l +Kial 

, ,, [ 1 k n l a  i 

(96) 

(97) 

(98) 

which is the equation used by Stark and Benz (1971) to analyze their data 
for valinomycin and monactin. It is interesting that Eq. (98) is of the same 
form as Eq. (89). For kRiai=kRial ,  . . . . . . . . .  kDi=kDi, klms a' =kls ksm,~, =ksma", 
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and c r' =c  r'', the concentration of carrier in the membrane becomes in- 
dependent  of applied potential regardless of the values of ks" ~ and kT~ ~. 
This is most  easily seen f rom Eqs. (7)-(14) by means of an example. Consider 
the combination of Eqs. (11) and (13) written for a single ionic species M~, 

J~=kDiNi'~-kR,aiN~ +k'~[fl~c~(O)-N~], (99) 

and the doubly primed equivalent, 

zs = k, ,  a, N " -  k,~ N;; + k7 ~ IN; ' -  & ~(d)]. (lOO) 

Suppose the solution to Eq. (99) is known;  i.e., the values of N;~, N:, G(O) 
and J~ are available. Let a bar denote the value at A V= 0. Then 

N"  = 2 N , -  N;, 

N / 8  - -  *! "=2N~8-Nis, 

G(d) =2c-s- G(0), 

(lOl) 

and Js will constitute a solution of Eq. (100) since kR~ai:~s=kD~N,, etc. 
The same applies to all of Eqs. (7)-(14), thus the relations in Eq. (101) are 
a property of the solution. 

Since N" +N~' and Ni's + N;~ are now constants at a given a~, either a 
simplified version of the lipid-buffered carrier or membrane-bound carrier 
approximations may be used to calculate the flux provided only that  a 
suitable form can be found to replace G c~ or Nr, respectively. These are 
found by calculating N" + N~' or N" + N~' + Ni's + N;', at A V= 0. The necessary 
expressions for the carrier concentrations are just Eqs. (73) and (74). Thus, 
f rom either Eq. (80) or Eq. (89) 

Kiaiflis ) / ,, kis--kis 

Jis=Cf l+Kiai l+(ki~+ki~ ) \kDi 2kDik~] 
, ,, ( 1  +_kRaal ] (102) 

which is the same as Eq. (98). The comments  following Eq. (80) apply to 
kR~ and kDi as they are used in Eq. (102). 

It should be emphasized that Eqs. (98), (102) and the result that NT 
is independent of A V for finite k~" and ki~" all require the interfacial rate 
constants to be independent of potential. In this case, the derivation of 
Eq. (102) shows that  the result does not depend on L/iuger and Stark's 
(1970) assumptions about the interfacial rate constants, Eqs. (93), (96) 
and (97), but rather on the much  weaker condition that  Ps >> Q. 
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Experimental Data 

CCCP 

Le Blanc (1971) has reported on the G - a n  and A V behavior for CCCP, 
a postulated negative carrier of protons. He shows that the predictions 
of Eqs. (47) and (48) are in agreement with the experimental data with the 
following values for the constants: P~ = 2 x 10- 3 cm/sec, P~ = 11 cm/sec, 
D~/~=3.6 x 10 -4 cm/sec. The results are discussed at length in his paper 
in terms of the local equilibrium approximation Eq. (48). At high pH, 
neither Eq. (84) nor Eq. (88) fits the experimental data. However, at low 
pH these predictions become indistinguishable from Eq. (48). Indeed for 
low pH, Eq. (84) in the version resulting from the negligible aqueous 
dissociation approximation may be useful for interpreting current-voltage 
relations. 

Actins and Valinomycin 

Szabo, Eisenman and Ciani (1969) have shown for the actins, and Stark 
and Benz (1971) have shown for valinomycin that on neutral or weakly 
charged phospholipid +n-decane membranes Eq. (56) or Eq. (71) is obeyed 
but in the degenerate form where Kiai~ 1 and 2PisK~a~ ~Q+2Ps.  Szabo 
et al. (1970) have looked for a potential in a gradient of the actins and find 
that there is none observable. This result implies that Ps/Q >> 1. These authors 
also noted that their experimental data for A V in a gradient of ions is in 
agreement with Eq. (60). 

Stark and Benz (1971) have reported data for valinomycin with 1 M 
KC1 as the electrolyte and a highly negatively charged phosphatidyl inositol + 
n-decane membrane. In this case, Eq. (71) in terms of c~ rather than a i is non- 
degenerate. They point out that Kic~ is independent of the membrane, 
and hence that P~sK~/Ps~7. They have also determined I - V  relations 
for monactin and valinomycin. At least for the latter case, they show that the 
coefficient of k~s +k~'s in Eq. (70) is independent of ci for low ci. Thus, for this 
system Eq. (55) is not obeyed. The same nonproportionality is observed 
for the nonactin K § fluxes across glyceryl monoleate +n-hexadecane mem- 
branes (Hladky, 1972). 

Stark and Benz endeavored to fit their experimental I - V  curves using 
Eq. (98) with the additional assumption that 

k~s = k i ~ e-~,F~V/ZRr. (103) 
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These authors quite properly displayed their data as G(AV)/G(O) vs. A V 

where 
I 

G(AV)-  AV (104) 

since this plot eliminates scale factors and at the same time displays dis- 
crepancies between theory and experiment much more clearly than the 
I - V  plot itself. In their results, the saturation behavior is peculiar since the 
value of kR i kis/(kDiks) for valinomycin is about seven from the G - c~ curve 
and about one from the I -V  curve. A similar discrepancy occurs in their data 
for monactin. These discrepancies may be caused by an interaction between 
the high negative surface charge on their phosphatidyl-inositol membranes 
and a strong adsorption of positive carrier complexes (Stark, Ketterer, 
Benz & L/iuger, 1971). In any case, until the effect is understood[ the data 
at high concentrations of K + will be difficult to interpret on a quantitative 

basis. 
For low K + concentrations the possible test of the model is its ability 

to predict the current-voltage relation. The only sensitive fit to Eq. (98) 
for valinomycin was obtained using erythrocyte lipids in decane. The fit 

is not good. For monactin a test is possible using phosphatidy] inositol; 
again the fit is poor. The experimental current continues to rise as A V is 
increased while the theoretically predicted current fit for low values of A V 
reaches a saturation limit. 

For al =a; '  sufficiently low that no concentration dependence of 
G(A V)/G(O) is observed, Eq. (70) becomes 

! r  

J~s=/~s , + ~ ; ,  k., \kS~! ~k;~/ (lo5. 

1 + ~-Di -~ ,, kDi 

For nonactin in glyceryl monoleate +n-hexadecane membranes it is possible 
to show that (Hladky, 1972) 

kRi k~Jk'D ~-- (kRi ki s/kD i) e-~.,s FAV/(2RT) for Mi = Na. (106) 

Assume that this relation also holds for the monactin-K + flux across 
phosphatidyl inositol membranes (it has in any case been assumed by Stark 
and Benz, 1971). Then their data implies that k~s/k'm>> 1 for large,, negative 
A V and hence that 

Jis~-P~a~ c '+c; '  , 2 kR i. (107) 
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The continued increase in ~ thus suggests a potential  dependence for  k ~  

but cont rary  to the suggestion in Stark and Benz (1971), it says nothing 

about  kg~ at high potentials except that  it is less than kls. The use of Eq. (70) 

to interpret the experimental results for  the neutral  carrier nonact in  will be 

presented in another  paper (Hladky,  1972). The principal result is discussed 

briefly in H a y d o n  and Hladky  (1972). 

Note Added in Proof: Markin and Liberman (C. R. Acad. Sei. U. R. S. S. 201:975, 
1971) have discussed the effect of unstirred layers on the carrier conductance ofthinlipid 
membranes and Markin (C. R. Acad. Sci. U. R. S. S. 202:703, 1972) has considered the 
current-voltage relation. There is, however, no mention of the rate of the association- 
dissociation reactions in the aqueous phase. The conductance equations therefore 
apparently assume that these reactions are at equilibrium; i.e., they assume the equality 
in Eq. (18) but not that in Eq. (19). The current-voltage relation presented by Markin is 
the extension of Eqs. (85) and (98) to allow for arbitrary charge of the free carrier and 
complex. 

Ciani, Eisenman, Laprade and Szabo (In: Membranes-A Series of Advances, Vol. 2., 
Ch. 2. G. Eisenmann, editor. Marcel Dekker, New York, 1972) have derived conductance- 
concentration, current-voltage, and zero current-voltage relations for neutral carriers of 
ions under the assumptions that (1) kRi and ko i  are independent of potential, and (2) 
either the interface limits the fluxes of free carrier and complex from the membrane 
to the aqueous phase or the flux of carrier into and out of the membrane is entirely in the 
free form. The second option is another instance of treating the aqueous association as 
negligible. Ciani et aL use a "general formalism" which is equivalent to allowing the 
potentiaI dependence of k~ to be somewhat arbitrary (as done here) and, for high 
concentrations, allowing kis to depend on the amount of complex in the membrane. The 
potential dependence of k~s was discussed by Haydon and Hladky (1972). 
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